

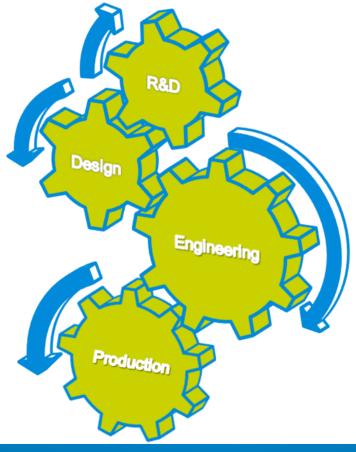
Babcock Noell GmbH

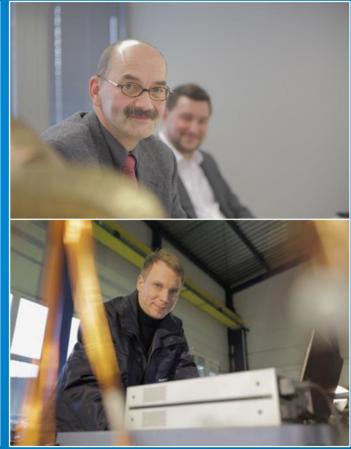
Supraleitende Beschleunigermagnete für FAIR – Entwicklung und Bau der SIS100 Dipole

Dr. Wolfgang Walter | Materials Valley 2016-03-10

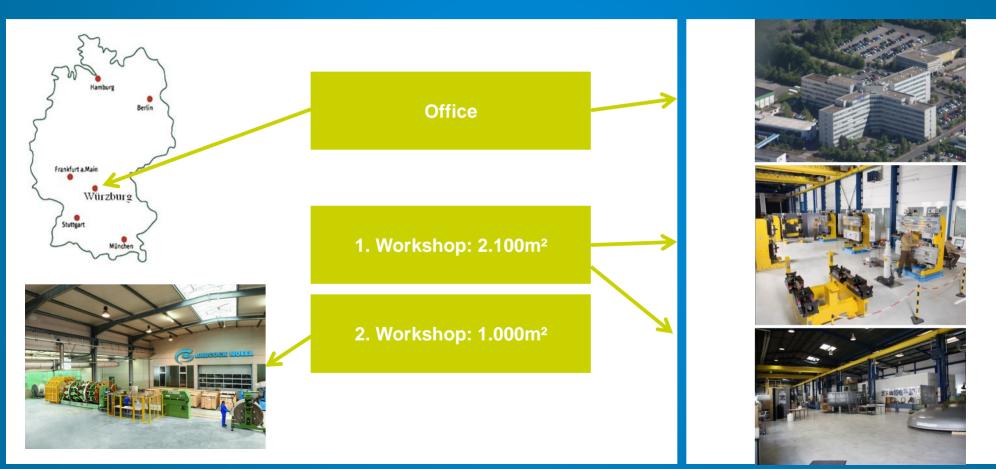
Outline

- 1. Introduction: Babcock Noell GmbH
- 2. The FAIR Project
- 3. Superconducting SIS100 Magnets
- 4. Development of the SIS100 Dipoles
- 5. Manufacturing of the FOS magnet
 - Cable Production
 - Coil Manufacturing
 - Manufacturing of Yoke
 - Magnet Assembly
- 6. Outlook on Series Production
- 7. Conclusion

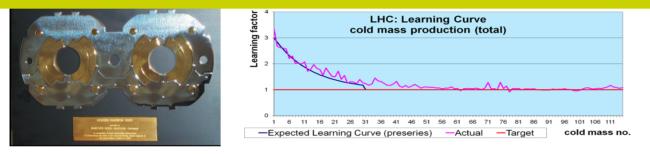



Magnet Technology at Babcock Noell

- Physicists, Engineers and Technicians work hand-inhand
- More than 30 years magnet technology experience
- Cooperation with research institutions and industry


WE MAKE RESEARCH WORK!

Babcock Noell: Site and Location

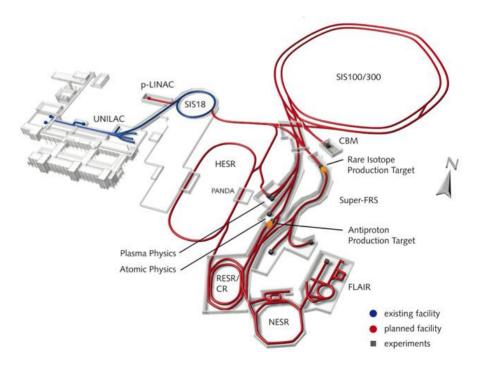


Accelerator Magnets at Babcock Noell

Superconducting since 30 years

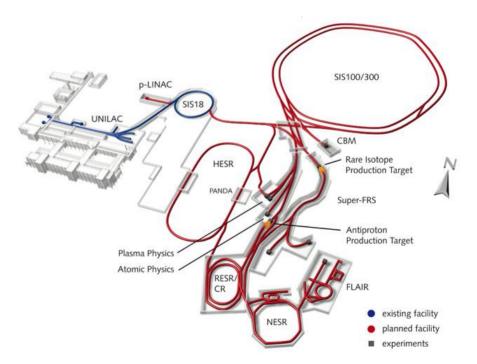
References

since 2012: FAIR SIS100 @ GSI 1999-2006: LHC @ CERN 1986-1989: HERA @ DESY 113 Series Dipoles416 Main Dipoles


Quadrupole Assembly

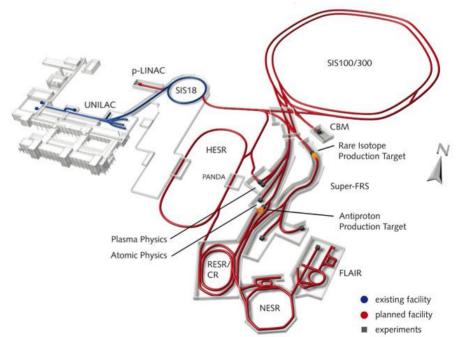
FAIR a Multifunctional Accelerator

- FAIR: Facility for Anti-proton and Ion Research
- GSI: Gesellschaft für Schwerlonenforschung
- New international accelerator facility
- Existing GSI accelerators are upgraded and serve as pre-accelerators
- Will provide antiproton and ion beams of high intensity and quality


FAIR an International Accelerator Complex

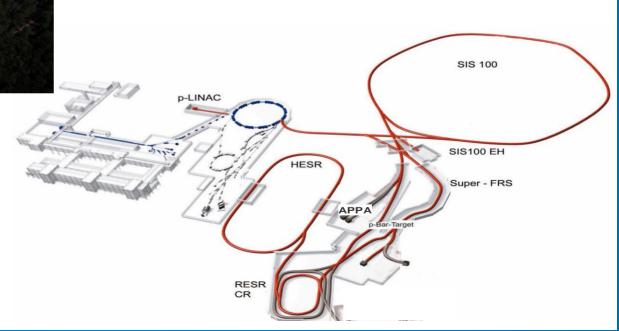
- FAIR startet by BMBF in 2007, FAIR GmbH funded October 4th 2010
- 10 member states: Finnland, France, Germany, India, Poland, Romania, Russia, Slowenia, Sweden, United Kingdom
- Budget:

Modularized start version 1,357 Billion € (cost basis 2005) major contribution from Germany and Hassia


 FAIR Facility will host ~3.000 researchers from ~50 countries

Physics at FAIR

- FAIR is a basic research facility to answer questions on the structure of matter and the evolution of the universe
- Some questions FAIR shall help to answer:
 - Why are quarks confined?
 - Why are nulei much heavier than the quarks forming it?
 - · What are the fundamental symmetries of nature?
 - What is the behaviour of matter at extreme pressure and temperature (big bang)?
 - What can we learn about the Quark-Gluon plama?



. . .

FAIR Start Version

FAIR Project Status & Roadmap

Overall project status:

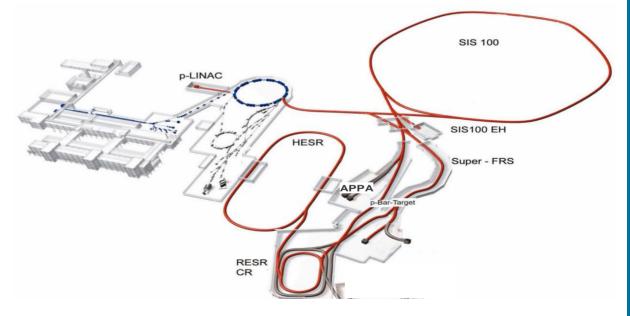
- About 60 % of the overall project cost bound in contracts.
- About 2/3 of the warm straight sections are fully integrated / design or pre-design completed
- All long lead items contracted (dipol series, quadupole series, Rf series)
- System integration and planning for injection system completed. All procurements started.

Plan for 2016:

• Completion of extraction system integration and pre-design. Start of procurements.

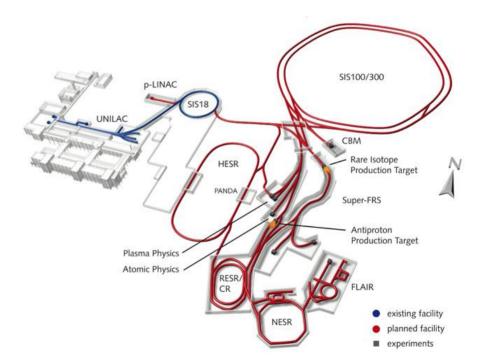
Plan for 2017:

- Start of procuremet for main dipole- and quadrupole power converter
- Last single items procurements started (e.g. KO exciter, Q-kicker etc.)


Plan for 2018:

• Start of procurements for standard UHV equipment (catalog orders)

FAIR Superconducting Magnets


- FAIR is a complex accelerator with various different magnet systems.
- Superconductivity is utilized for accelerator and detector magnet systems e.g.:
 - SuperFRS Multipletts and Dipoles
 - R3B Glad Detector Magnet
 - SIS100 Dipole and Quadrupole Magnets

The SIS100 Synchrotron

- SIS100: Heavy Ion Synchrotron (Schwerlonen Synchrotron)
 - magnetic rigidity: 100 Tm
 - circumference: 1100 m
- The 1.100 m circumference SIS100 Synchrotron is the "heart of the facility" and delivers accelerated protons at highest intensity and high energy to a complex of storage rings and experimental stations
- This enables high intensity secondary beams and antiprotons and exotic nuclei can be used at experiments

SIS100 Superconducting Quadrupole Units

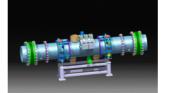
Quadrupole units comprise quadrupoles, sextupoles, steerer and BPMs; Arc modules contain cryo-catcher

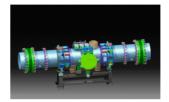
Quadrupole Units are installed on a common girder

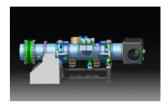
Assemblies of 2 Quadruopole Units into one cryostat are Quadrupole Doubletts

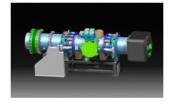
Quadrupole Units are provided as in-kind contribution by JINR (Dubna, Russia)

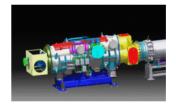
SIS100 Superconducting Quadrupole Doublets

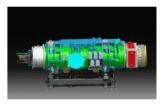

83 pieces (11 types) of quadrupole doublet modules

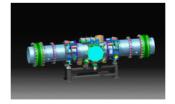

length: app. 5.7m diameter: Ø900mm weight: 6300kg

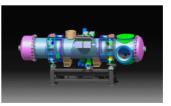

window-frame design

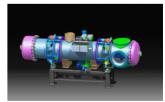

QDM: 2 QP-Units:


maximum magnetic induction B_{max} : 27,8 T ramp rate dB/dt: 58 (T/m)/s









SIS100 Superconducting Dipoles

113 dipole magnets

length: app. 3.2m cryostat: Ø900mm weight: 3500kg

window-frame design curved (radius of curvature 52.632m)

maximum magnetic induction B_{max}:1.9T ramp rate dB/dt: 4 T/s

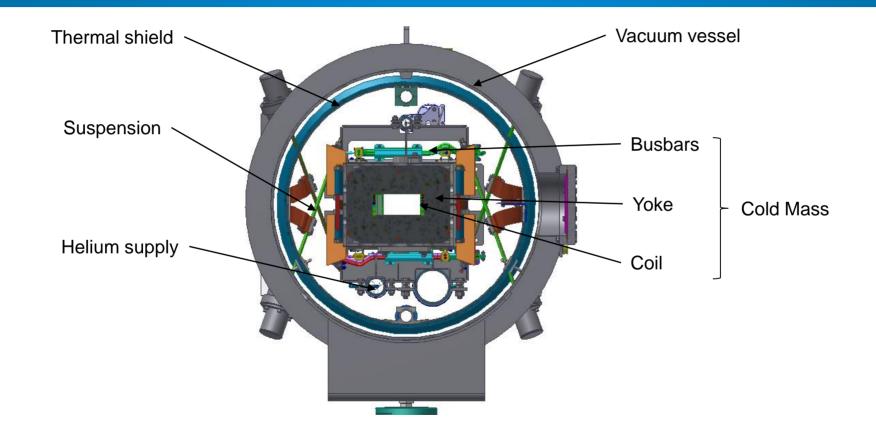
SIS100 Dipole Tests at GSI

Superconducting SIS100 Dipoles are tested at GSI:

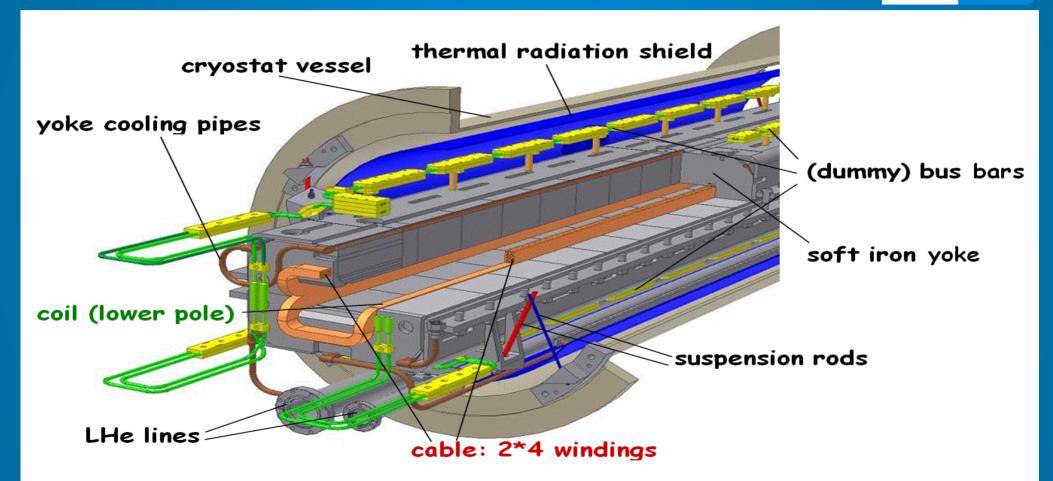
- Civil construction including media supply completed
- Cryogenic components are installed and commissioned
- STF ready for testing in spring 2015
- HTS current leads received and tested

1.5 kW at 4 K Cold Box

Development, Prototype, FOS and Series

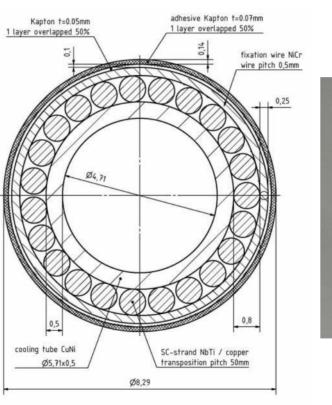

- 2004-2010 Development with Industry cable insulation, coil structure
- 2007-2008: Prototype Dipole
 2-layer straight magnet

- 2012-2016: First Of Series (FOS) Dipole
 1-layer curved magnet
- 2014-2016: cold test and yoke modification
- 2016: start of SIS100 Dipole series production 108 magnets + 4 spares

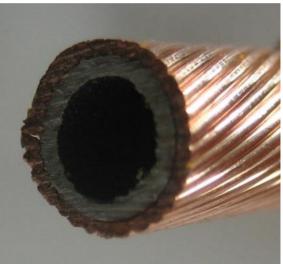

Basic SIS100 Dipole Design

SIS100 Dipole Prototype Design

Materials Valley - W. Walter - Babcock Noell GmbH


SIS100 Dipole Cable

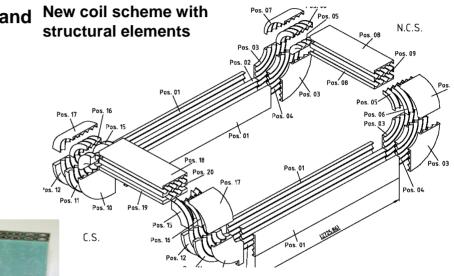
Main requirements of the magnet design:


- high field quality
- fast periodic ramp rate (1.9 T, 4 T/s, 1 Hz)
- →Nuclotron Synchrotron Dipoles (JINR Dubna) were used as basis:
- Superferric window-frame design
- Nuclotron type cable

Evolution of the cable:

- Kapton to replace prepreg impregnation
- Optimization of tube and strand dimensions

Dipole Development within EU 6th Framework Program



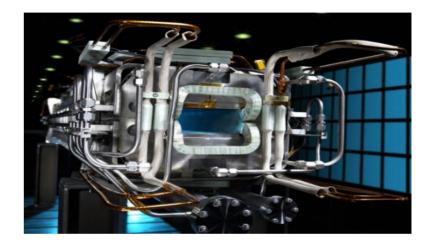

EU-FP6 Development by GSI with partners from institutes and structural elements

- Strong dynamical forces
- High accuracy and reproducibility

Babcock Noell contributions to EU-FP6 programm:

- Design and layout
- Winding scheme and tooling concept
- Several test pieces
- Measurements mech. and thermal properties

Industrial Prototype Production


Fast ramped superferric prototype dipole:

- Fast ramping \rightarrow 4 T/s
- NbTi, Nuclotron Cable
- Length ~3 m straight!
- Magnetic Field 1.9 T

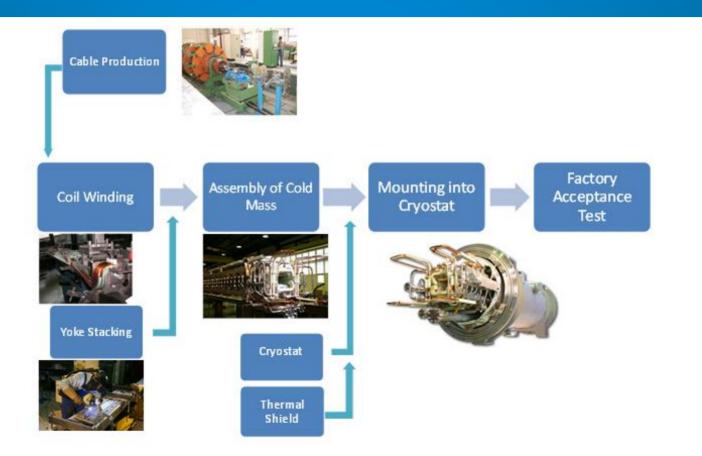
Prototype scope and goals:

- Industrial manufacturing of the SC cable
- Qualification for the industrial production process and tooling concept

SIS100 Dipole Prototype and FOS Magnet

Major step: 2-layer straight -> 1-layer curved magnet!

Advantages of 1-layer curved magnet:


- 4 times lower hydraulic resistance of coil
 -> ramping with continuous triangular cycling mode @ 4 T/s
- Reduction of peak field to 1.9 T
 -> reduction of field errors due to iron saturation limit

- -> New challenges in manufacturing:
- winding of bent coil and stacking of bent yoke
- increased cable diameter reduced the available space for electrical insulation and structural components in the coil

Parameter	Prototype	FOS
Effective length	2.756 m	3.062 m
Bending angle	0 deg	3.33 deg
Bmax	2.1 T	1.9 T
Max. ramp rate	4 T/s	4 T/s
Layers x turns	2 x 8	1 x 8
Operating current	7 kA	13 kA
Outer diameter of cooling tube	5 mm	5.7 mm
Number of strands	31	23
Strand diameter	0.5 mm	0.8 mm
Cable diameter	7.36 mm	8.29 mm

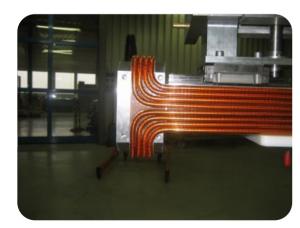
FOS Magnet: Manufacturing Workflow

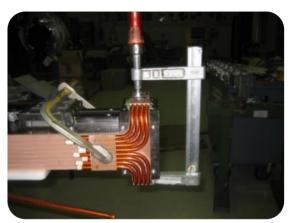
FOS Magnet: Cable Production

- Demand of cable per dipole: 62 m (coil) + 52 m (busbars)
- Cable produced for 1 dummy coil with copper strands
- For the series a total of 16,000 m are needed

 $v_{Spinner} = 705 \text{ rpm}$

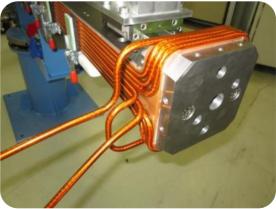
v_{Cable} = 0.35 m/min




FOS Magnet: Test Winding and Dummy Coil

- Precisely machined G11 elements
 - define position of turns with respect to each other and to yoke
 - avoid relative motions in operation
- Cable is glued into G11 to achieve a monolithic block
- Prepreg used in coil head area

FOS Magnet: Coil Winding on Winding Tool

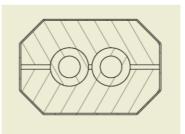


Winding tool developed for bent single layer FOS coil, same concept as for Prototype coil

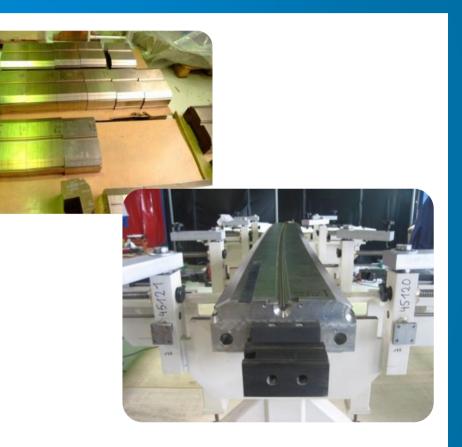
FOS Magnet: Gluing of G11 Structure with Coil

t ~ 5 h T ~ 180 °C

FOS Magnet: Coil Prepreg Impregnation


FOS Magnet: Bending of Busbars

- Special tool developed for bending
 7 different types of busbars
- Special tool developed for impregnation of busbar-pairs


FOS Magnet: Yoke Manufacturing

Lamination: M600-100A, 1mm, Stabolit 70 coating

Yoke Manufacturing:

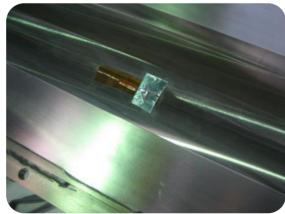
- 1. Stack 200 mm curved packages, filling factor \ge 98%
- 2. Glue packages in oven
- 3. Place packages on girder
- 4. Adjust filling factor
- 5. Insert cooling tubes

FOS Magnet: Yoke Manufacturing (2)

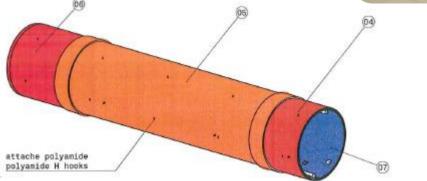
Lamination: M600-100A, 1mm, Stabolit 70 coating

Yoke Manufacturing:

- 6. Weld side and top covering sheets
- 7. Machine the half-yokes


FOS Magnet: Shield, Helium Supply-Lines, Potential Breaks, Sensors





FOS Magnet: MLI-blankets

- MLI Superinsulation:
 - 30 layers external
 - 5 layers internal
- Pre-fabricated MLI-blankets with fastener system ready for assembly
 → efficient concept for series production

FOS Magnet: Vacuum Vessel

- Vacuum vessel parameters:
 - Material: 1.4301 / AISI 304
 - Inner diameter: 848 mm
 - Length: 2770 mm
 - Weight: 900 kg
 - Standard operating pressure: ≤ 10-6 mbar
- Manufactured according Pressure Equipment Directive DGRL 97/23/EG / AD2000

[] [-] [mm]	0,85 0 gasförmig	Den Odkursent besteht an 2 Sahan 5alia 1 von 2
(-)	0,85	2.Sehan
		2.Sehan
		-
	-50 / +35	Belds N. 00126310V
		Union Zather:
liegt außerhalb des G ir Babcock Noell Gmb rüft.	eltungsbereiches der Druck H wurde der Behältermantei	Court C
Vakuumbehälter FO	s	
2012		
N.911037		
Babcock Noell Gmbl	н	
GSI SIS 100 Dipole		
Herr Stefan Sattler Alfred-Nobel-Str. 20		Mohr Sichorbe Mohr Wort.
0N ng des Vakuumbehä	ilters FOS	Industrie Service
	rig des Vakuumbehä Babcock Neoll Gmb Herr Staffan Sattler Alfred Alobel-Sit. 20 2010 Witzburg, Ge GSI SIS 100 Dipole Babcock Neell Gmb N.911037 2012 Vakuumbehälter FO liegt außenhal des G re Babcock Neell Gmb rüft. <u>k. [ber]</u>	ing des Vakuumbehälters FOS lähoock Notil Grein Herr Staffer Satter Mich (Note) S., Zermany Soll Sta 190 Djole Baboock Notil Grein Satter Satte

FOS Magnet: Assembly of Cold Mass

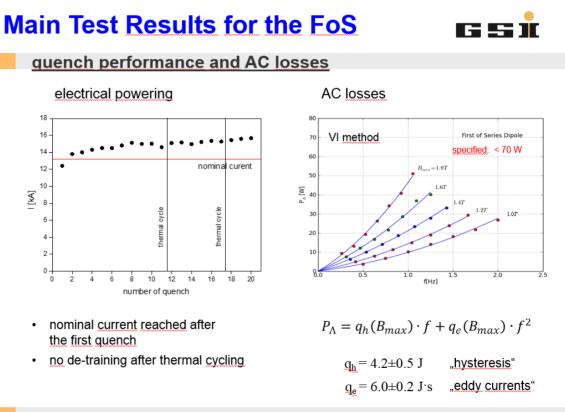
- Assembly of coil and half yokes on rotating device
- Installation of
 - Busbars
 - Potential breaks
 - Instrumentation
 - Helium supply-lines

FOS Magnet: Assembly of Magnet

Assembly on dedicated rig:

- 1. Place thermal shield in vacuum vessel
- 2. Pull vacuum vessel with shield over cold mass and suspend on rods
- 3. Align with laser-tracker and pretension the tie rods

SIS100 Dipole FOS Cold Test


FOS has been cold tested successfully at GSI's test facility.

Electrical and themal performance is very good.

To improve the field quality of the dipole a second yoke has been produced with laser welding technology and the dipole was re-tested with the new yoke.

CERN Courier March 2016

"The results ... [from the site acceptance test] indicate high mechanical precision and excellent performanceof the superconducting coil."

SIS100 Laser Welded Yoke

FOS yoke	Laser welded yoke
Mag hand welded	Laser machine welded
20-30 cm/min.	200 cm/min.; low heat input
Pole surface machined	No machining of pole surface
Tolerances: horizontal <0,2mm; vertical >5mm	Tolerances: horizontal <0,2mm; vertical <1,5mm

SIS100 Laser Welded Yoke

Endblocks (200mm long): Lamination M600-100A, 1mm, Backlack Stabolit 70 coating Middle part: Lamination M600-100A, 1mm, isolation coating PH2

Yoke Manufacturing:

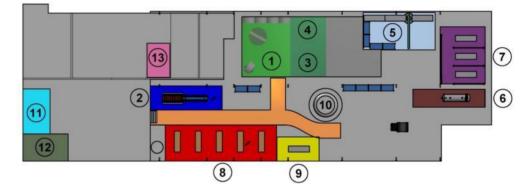
- 1. Stack 200 mm curved packages for endblocks, filling factor ≥ 98%
- 2. Glue packages in oven
- 3. Machine endblock with Rogowski profil
- 4. Place machined endblock on girder
- 5. Place single yoke sheets on girder
- 6. Adjust filling factor, filling factor \ge 98%
- 7. Insert cooling tubes

SIS100 Laser Welded Yoke

- Stick side and top covering sheets
- 7. Laser weld half-yokes

6.

8. Machine holes and reference planes


Outlook on Series Production

Design modifications for the series production:

- Endblock design
- Stamped yoke sheets instead of lasercut
- Yoke manufacturing process
- MLI on Helium supply lines
- Change to ceramic voltage breakers

Manufacturing layout for SIS100 series production:

- 1 = winding, 2 = baking press, 3= coil insulation,
- 4 = electrical tests of coils, 5 = stacking of yoke packages,
- 6 = yoke heat treatment, 7 = assembly of half-yokes,
- 8 = assembly of cold mass into cryostat, 9 = geometrical measurements,
- 10 = He leak test on coils, 11 = pre-manufacturing of busbars,
- 12 = leak tests on components,
- 13 = thermal shield manufacturing

Industrial Challenges in SIS100 Dipole production

- Limited number of industrial prototypes
- 4 years time-gap between industrial prototype and start of FOS production
- Project managment:
 - supply chain for non-standard sub-supplies
 - ramp up and down for series production
 - series production in quality, time, cost
- FAIR requires tolerances on components (curved yoke) that are at the edge of industrial feasibility

Conclusion

- FOS Magnet: last critical step before industrial series production
 -> successfull performance at cold
- Concepts developed for Prototype could be transferred to FOS Diple.
 Adoptions in manufacturing process necessary especially due to changed yoke dimensions and shape
- Start of series production in 2016 expected

Babcock Noell GmbH

Alfred-Nobel-Str. 20 97080 Würzburg Germany

Phone +49 931 903-6054 Fax +49 931 903-6010

Wolfgang.Walter@bilfinger.com www.bng.bilfinger.com

Registered at Local Court Würzburg, HRB 7156 VAT-Id. No.: DE211420259

Executive Management: Helmut Welp, Chairman Dr. Ronald Hepper Roland Pechtl This is a presentation of the work of many colleagues at GSI and Babcock Noell.

Special thanks to Peter Spiller for providing slides on the FAIR project and its current status.

Thank you for your attention!